If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=65
We move all terms to the left:
b^2-(65)=0
a = 1; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·1·(-65)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{65}}{2*1}=\frac{0-2\sqrt{65}}{2} =-\frac{2\sqrt{65}}{2} =-\sqrt{65} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{65}}{2*1}=\frac{0+2\sqrt{65}}{2} =\frac{2\sqrt{65}}{2} =\sqrt{65} $
| 5x–7=14–2× | | 9.17b=3.57 | | q+189/17=16 | | 72m+200=11,786 | | 2q^2-q-48=0 | | (8x+8)+(5x-1)=180 | | (3x+12)+55+41=180 | | (4x+8)+44+60=180 | | (4x+20)+72+64=180 | | h/18-5=1 | | (8x+11)+71+64=180 | | (2x+3)+(5x+17)=180 | | 13z-28=8+12 | | 1/5+13=x-207 | | 13z-28=+12 | | 1/5+13=x207 | | 1/2 (4y+8)=6 | | |-x+7|=20 | | 1/4x-11/4=-1/7x | | -8r+16=8 | | 15x-3=3x-5 | | 3(x+8)=93 | | F(x)=-2^2+10x | | |3x-13|=-2 | | f/12+96=108 | | 9n^-144=(3n+12)(3n-12) | | -(-8x÷2x)=4 | | 21=m/10+19 | | 6n+8=5n+17 | | 4r=-46 | | 7x-10x+18+2x=-15 | | -2c+7c=15 |